基于 Spring Boot 的 MCP(模型上下文协议)服务器实现示例,提供工具暴露、资源管理与 prompts 渲染等核心能力,支持通过 SSE 进行 JSON-RPC 通信,作为 LLM 客户端的上下文与功能后端。包含 Kotlin 与 Java 两种实现以及可直接运行的服务器启动脚本,适配 Claude Desktop 等 MCP 客户端进行集成测试与演示。
基于 Model Context Protocol (MCP) 的后端服务器,提供资源、工具和提示模板等上下文能力,面向 LLM 客户端以标准化的 JSON-RPC 形式进行交互,支持多传输协议并实现会话管理与能力声明。
基于 Model Context Protocol 的 MCP 后端,为大语言模型提供上下文资源、工具调用和提示模板渲染等能力,支持 JSON-RPC 通信及多传输协议扩展,内置浏览器自动化与会话/缓存等核心模块。
基于 NLWeb 的 MCP 服务器实现,提供资源、工具和提示模板的标准化访问,并通过 JSON-RPC 与客户端通信,将请求转发到 NLWeb 后端实现具体功能。
在 Obsidian 中实现一个基于 Model Context Protocol 的 MCP 服务器,提供资源、工具与提示模板的后端服务,并通过 JSON-RPC 与客户端进行交互,支持并发会话、HTTP/HTTPS 传输以及安全访问控制。
基于模型上下文协议(MCP)的后端实现,提供对 Markdown 内容资源的托管与管理、工具注册与执行,以及可渲染的 Prompt 模板,供 LLM 客户端通过 JSON-RPC 进行资源读取、工具调用和提示渲染等交互,包含可运行的服务器端代码与完整工具集。
基于模型上下文协议(MCP)的后端服务器实现,处理 JSON-RPC 请求,提供初始化、工具列表以及将 Claude 的 selections 写入本地文件的能力,并附带输入校验与日志记录。
基于模型上下文协议(MCP)的后端服务器,向大语言模型客户端提供会议数据资源、工具调用和提示模板等上下文服务,并通过 JSON-RPC 进行通信。
基于 Model Context Protocol (MCP) 的后端服务器实现,向 MCP 客户端提供 consulta_llm 工具、资源上下文和提示模板,支持 JSON-RPC 请求/响应,当前实现通过 STDIO 传输进行通信,具备资源管理、工具注册与执行、以及提示渲染等核心能力。
基于 Model Context Protocol (MCP) 的后端服务集合,提供资源管理、工具注册与执行,以及可渲染的 Prompt 模板,支持 JSON-RPC 风格通信和 STDIO/WebSocket 等传输协议,用于向 LLM 客户端暴露上下文、工具和资源等能力。
基于 Model Context Protocol (MCP) 的 Photoshop 后端实现,提供将资源、工具执行能力和提示模板等以标准化 JSON-RPC 形式暴露给 LLM 客户端的后台服务,能够在 MCP 客户端与 Photoshop 的 UXP 环境之间进行交互、执行脚本、读取模式与架构信息并返回结果。
基于 Model Context Protocol (MCP) 的后端实现,提供策略评估、计费意图创建与使用计量等工具,通过 JSON-RPC 与 LLM 客户端交互,支持多种传输方式,作为 AI 代理上下文服务的核心服务器组件。
基于模型上下文协议(MCP)的后端服务器实现,提供资源、工具与提示模板的托管与管理,并通过 JSON-RPC 与客户端进行交互,支持多种传输协议、会话管理、能力声明以及外部桥接等扩展能力,用于为大语言模型应用提供可扩展的上下文服务框架。
基于 Model Context Protocol (MCP) 的服务器端实现,提供资源(Resource)、工具(Tools)和提示模板(Prompts)的注册、管理与渲染,并通过 JSON-RPC 与 LLM 客户端进行通信,支持多传输协议(如 Stdio、HTTP 流和 SSE)。实现了会话管理、能力声明以及对外暴露的内存引擎(OpenMemory/SQlite),可用于在本地或远程环境中为LLM客户端提供统一的上下文服务。
基于 Model Context Protocol(MCP)的后端服务器实现,向 LLM 客户端以标准化 JSON-RPC 方式暴露 Home Assistant 的资源、工具与提示模板,支持通过 MCP 客户端调用读取实体、执行服务、管理排程等功能。
基于模型上下文协议(MCP)的后端服务器,实现资源/工具/提示模板的托管与对外能力暴露,支持 JSON-RPC 请求、SSE 实时传输和会话管理,为 LLM 客户端提供标准化的上下文服务。
将 deepeval-wrapper 的评估逻辑通过 MCP 接口暴露为 FastAPI 服务,提供对 MCP 客户端的标准化上下文评估能力与对 wrapper 的直接访问能力。
基于 Model Context Protocol (MCP) 的后端服务器,提供资源、工具和提示模板的管理与执行,通过 JSON-RPC 与客户端通信,支持多种传输协议(stdio、WebSocket、SSE),用于向大语言模型(LLM)提供可扩展的上下文服务。
基于 Model Context Protocol 的 MCP 服务器实现,提供 maestro_status 工具用于向 Maestro UI 汇报会话状态,并通过 JSON-RPC 与客户端交互,支持 initialize、tools/list、tools/call、notifications/initialized 等消息。服务器通过 STDIO 与 MCP 客户端通信,兼容 Maestro 的状态上报与会话管理,集成在 Maestro 的 Tauri 应用中用于多会话上下文服务。
基于模型上下文协议(MCP)的后端实现,用于向 LLM 客户端提供资源管理、工具注册/执行以及 Prompt 模板渲染等能力,并通过 JSON-RPC/WebSocket 等传输协议进行通信。本仓库包含完整的服务端实现、工具暴露、Prompts 加载与渲染、会话管理以及安全策略,能够作为可运行的 MCP 服务器端提供上下文服务。
基于 Model Context Protocol 的 MCP 服务器实现,提供资源与工具的注册/管理、Prompt 的定义与渲染,以及会话管理与协议能力声明,支持通过标准输入输出或流式 HTTP 等传输协议与客户端进行 JSON-RPC 通信,用于为大型语言模型(LLM)提供上下文信息与外部功能访问能力。
基于模型上下文协议(MCP)的后端服务,提供资源、工具和提示模板的管理与渲染,并通过 JSON-RPC 与 LLM 客户端通信;内置 Notion 数据源作为底层存储,包含一个独立的 Agent 服务用于将自然语言转化为可执行工具调用。
一个基于 Model Context Protocol (MCP) 的后端服务,提供多代理协作聊天与协调工具,通过 MCP 接口暴露 chatroom_join、chatroom_broadcast、chatroom_check、chatroom_ask、chatroom_leave 等工具,并通过 WebSocket 实时路由消息给 Claude Code 客户端。
基于模型上下文协议(MCP)的后端服务器实现,专注为大语言模型客户端提供标准化的上下文服务:托管资源、注册并执行工具、定义和渲染Prompt模板;通过 JSON-RPC 进行通信,具备会话管理与能力声明,并支持多种传输通道,以实现安全、可扩展的上下文服务框架。
基于模型上下文协议(MCP)的 Verkada API 后端服务器,提供资源管理、工具注册与执行,以及提示模板渲染等能力,通过 JSON-RPC 与大语言模型客户端进行通信,具备本地部署与扩展能力,并内置对 Verkada API 的工具集和请求处理框架。
基于 Model Context Protocol (MCP) 的后端实现,作为对话型LLM客户端的后端服务,托管并管理资源(Resources)、注册与执行工具(Tools)、定义并渲染 Prompt 模板(Prompts),通过 JSON-RPC 与客户端通信,支持 stdio 与 HTTP 等传输方式,提供会话管理和能力声明的上下文服务框架。
基于 Model Context Protocol 的 Dolibarr ERP/CRM 的 MCP 服务器实现,提供资源/工具/提示等上下文服务,支持 STDIO 与 HTTP 传输,通过 MCP 协议与客户端进行 JSON-RPC 交互,实现对 Dolibarr 的完整后端集成能力。
基于 Model Context Protocol 的可运行 MCP 服务器实现与测试框架,提供工具、资源托管、工具调用执行、以及对扩展与评测的支持,便于对接大语言模型客户端进行上下文服务测试和集成验证。
基于 Model Context Protocol (MCP) 的后端服务器实现,向大型语言模型客户端提供 npm 包的上下文、健康数据与可用工具,通过 JSON-RPC 形式处置资源、工具、提示模板等能力,并支持 MCP 客户端的连接与调用。
基于模型上下文协议的 MCP 服务器实现,提供资源、工具和提示模板的后端能力,通过 JSON-RPC 与客户端通信,注册并执行工具、管理会话并支持简单的 stdio 传输。
基于 Model Context Protocol(MCP)的服务端实现,提供标准化的资源管理、工具注册与执行、以及 Prompt 模板渲染等功能,支持通过 JSON-RPC 与 LLM 客户端通信,管理会话与能力声明,并具备多传输协议(如 Stdio、SSE、WebSocket)等扩展能力,用于对接外部数据源、工具和上下文提示等,实现对 LLM 的上下文服务提供与编排。
基于 Model Context Protocol 的 MCP 服务器实现,用于将一个 Discord 自助账户的资源、工具与对话模板通过标准化的 MCP JSON‑RPC 后端对接到 LLM 客户端,支持 stdio 传输并以 JSON-RPC 提供资源、工具执行与提示渲染等功能。
基于模型上下文协议(MCP)的服务端实现,提供资源管理、工具注册与执行、以及Prompt模板渲染等核心功能,通过JSON-RPC与LLM客户端通信,支持多传输协议(如STDIO、WebSocket、SSE),并在浏览器自动化场景中实现对Brave浏览器及Puppeteer的可扩展上下文服务,适合为LLM代理提供可控、可扩展的上下文和能力服务。
基于 Model Context Protocol (MCP) 的后端服务,提供对 OMOP CDM 数据库的资源、工具与 Prompt 的标准化暴露,并通过 JSON-RPC/TCP/HTTP 等传输方式与 LLM 客户端进行交互。该实现包含服务器端工具、提示、示例查询及 SQL 执行能力,支持本地 Stdio 以及 HTTP 传输。
基于 Model Context Protocol 的多 MCP 服务器后端网关,提供统一的 JSON-RPC 服务来托管资源、注册工具并渲染提示模板,通过 FastAPI 将多个独立 MCP 服务器整合为一个可扩展的上下文服务入口。
基于 Model Context Protocol (MCP) 的观测型后端代理,作为 MCP 客户端与服务器之间的透明中间件,实现对 JSON-RPC 请求/响应的零拷贝透传,同时提供实时可视化、历史日志与可选的审计签名能力,帮助开发者在不干预执行的前提下对工具链进行观测和回放。
基于模型上下文协议(Model Context Protocol,MCP)的后端示例,封装 Shirtify 代理并通过send_message工具向MCP客户端提供上下文对话能力与外部功能调用,支持 SSE/streamable_http 等传输模式的JSON-RPC风格交互。
基于 Model Context Protocol (MCP) 的可信服务端实现,提供资源、工具注册与执行、以及提示模板渲染等核心能力,支持端到端安全传输并可通过多种传输方式与客户端对话。该实现包含服务器逻辑、信任机制整合、以及面向 MCP 客户端的安全传输客户端接口。
基于 Model Context Protocol(MCP)的后端服务器实现,提供资源托管、工具注册与执行、Prompt 模板渲染等核心能力,并支持多传输协议(如 WebSocket、MQTT/UDP 等)通过 JSON-RPC 与客户端通信,面向边缘设备和物联网场景的上下文服务解决方案。
基于 Model Context Protocol (MCP) 的后端实现,提供资源/工具/提示模板的管理与渲染,通过 JSON-RPC 与 LLM 客户端进行交互,支持 HTTP 与 STDIO 等传输模式的多种通信方式。
基于 Model Context Protocol 的 MCP 后端服务器,实现资源与工具的管理,并通过 JSON-RPC 接口与 LLM 客户端进行交互,支持多工具与内容生成功能。
基于模型上下文协议(MCP)的服务器实现,向LLM客户端提供ATLAS Central Page的资源、工具与提示模板的统一访问接口,支持JSON-RPC风格请求/响应,以及多传输模式(如STDIO、HTTP)以服务化LLM上下文信息和能力查询。
基于 Model Context Protocol 的 MCP 服务器,使用 Spring Boot 实现,提供 MonicaHQ CRM 数据的资源访问、工具调用及内容渲染,支持 STDIO 与 WebSocket/HTTP 等传输模式,面向大语言模型客户端(如 Claude Desktop)提供标准化的上下文服务。该服务器实现了资源管理、工具注册与执行,以及提示模板渲染等核心能力,以 JSON-RPC 2.0 进行通信。
基于 Model Context Protocol(MCP)的后端服务器实现,提供资源、工具和提示模板的标准化管理与执行,并通过 JSON-RPC 与客户端进行通信,支持多种传输协议(如 Stdio、SSE、WebSocket/HTTP)以实现对本地资源、外部能力和交互场景的可扩展上下文服务。
基于 Model Context Protocol (MCP) 的后端服务器,向 MCP 客户端提供标准化的资源访问、工具执行和 Prompt 模板渲染等能力,支持多传输协议和会话管理,适配 Claude Desktop 等 MCP 客户端的上下文服务需求。
基于 Model Context Protocol (MCP) 的后端服务,提供将结构化数据转换为 TOON 格式以实现显著的令牌节省,并对接 Claude Code 插件与 MCP 客户端,暴露工具调用与资源访问能力,支持通过标准输入输出(stdio)进行通信与会话管理,同时内部集成本地统计指标。
基于 Model Context Protocol 的 MCP 服务器端实现,提供资源、工具与示例性提示模板等能力,支持通过 JSON-RPC 与客户端通信,且实现了通过不同传输协议(如 SSE/HTTP)进行交互的服务器端逻辑。
基于 Model Context Protocol (MCP) 的后端治理与资源/工具/提示模板管理服务器,面向 LLM 客户端提供标准化的上下文数据、可注册/执行的工具集以及可渲染的 Prompt 模板。服务器通过 JSON-RPC 与客户端通信,支持会话管理、能力声明,并具备扩展传输协议(如 STDIO、SSE、WebSocket)的能力,为 LLM 应用提供安全、可审计的上下文服务框架。
Snowgoose仓库内包含的一个基于Model Context Protocol (MCP) 的简单时间工具服务器实现。
基于Spring AI框架构建的MCP服务器,提供资源、工具和Prompt模板管理,并通过SSE实现与LLM客户端的通信。
基于 RESTful API 的 MCP 服务器传输层实现,支持通过 HTTP 协议接收和发送 MCP 消息。
为AWS Lambda函数提供MCP服务器基础设施,支持SSE协议,简化LLM应用在AWS环境中的上下文服务构建。
为 EventCatalog 提供 MCP 接口,支持 Claude、Cursor 等 MCP 客户端访问 EventCatalog 的架构文档和信息。
Image Generation MCP Server是一个基于Model Context Protocol的后端应用,允许LLM客户端通过调用工具生成图像,并支持配置图像参数和保存路径。