基于 Model Context Protocol (MCP) 的后端实现,提供资源/工具/提示模板的管理与渲染,通过 JSON-RPC 与 LLM 客户端进行交互,支持 HTTP 与 STDIO 等传输模式的多种通信方式。
基于 Model Context Protocol (MCP) 的邮件上下文后端,为大模型/LLM 客户端提供资源访问、工具执行和提示渲染能力;通过 JSON-RPC 与客户端通信,支持在本地Outlook 环境中进行邮件加载、查询、撰写与批量转发等操作,并提供服务端会话管理与工具注册机制。该实现面向在 Windows 上使用 Outlook 的场景,核心目的是为 LLM 应用提供可扩展、可控的上下文服务。
基于 Model Context Protocol 的 MCP 服务器实现,提供资源管理、工具注册与执行、以及 Prompt 模板渲染等能力,面向 Claude Code 等 LLM 客户端提供标准化的上下文与功能服务。
基于 Model Context Protocol (MCP) 的后端服务,向大型语言模型提供 MediaWiki 的资源访问、工具执行和提示模板渲染等上下文服务。服务器支持多种传输模式(标准输入输出、HTTP),并实现会话管理、权限控制、可观测性和安全保护,帮助 LLM 客户端以标准化方式查询 wiki 内容、执行外部工具以及获取/渲染 Prompt 模板。
基于 Model Context Protocol 的 MCP 服务器实现,提供资源管理、工具注册与执行、以及 Prompt 的定义/渲染,支持通过多种传输方式进行 JSON-RPC 通信,供 LLM 客户端以标准化方式获取上下文、调用外部工具并渲染对话模板。
基于模型上下文协议(MCP)的 PostgreSQL 只读服务器实现,向LLM客户端提供结构化数据库资源、工具注册与提示渲染能力,通过JSON-RPC风格的MCP接口进行交互,支持多数据库只读查询、模式描述、索引/外键查询以及健康监控等功能。
基于 Model Context Protocol (MCP) 的后端服务器,作为 VidCap YouTube API 的上下文服务提供方,管理资源与工具,支持 JSON-RPC 的请求/响应,并通过 STDIO、流式 HTTP/WebSocket 等传输方式与 MCP 客户端进行交互,便于 AI 助手在对话中获取视频数据、执行外部功能和渲染提示模板。
基于 Model Context Protocol 构建的 MCP 服务器实现集合,提供资源与工具的托管、Prompt 定义及渲染能力,并通过 JSON-RPC 与客户端通信,支持多入口输出、浏览器扩展场景,以及跨进程/跨页面的上下文服务能力。
基于 Model Context Protocol (MCP) 的后端服务端实现,作为 MCP 服务器向大语言模型客户端提供标准化的资源管理、工具注册/执行以及 Prompt 模板渲染等能力,使用 JSON-RPC 进行通信,并支持会话管理与多传输协议(如 Stdio、SSE、WebSocket)以满足多样化上下文服务需求。
基于 Model Context Protocol (MCP) 的后端服务器,实现了资源(数据)托管、工具注册与执行、以及提示模板渲染等核心能力,并通过 JSON-RPC 方式与客户端通信,具備会话管理、能力声明以及对多传输协议的支持,用于为 LLM 客户端提供可扩展的金融上下文服务。
基于 Spring Boot 和 Spring AI 的 MCP 服务器,集成 AI 模型并可管理外部 MCP 服务。
基于Micronaut框架构建的MCP服务器PoC,专注于提供工具注册和调用功能,通过标准输入/输出与客户端通信。
基于Cloudflare Workers实现的远程MCP服务器,提供资源管理、工具注册和Prompt模板渲染等MCP核心功能,并支持OAuth登录。
基于OpenAI Agents SDK的MCP示例服务器,提供工具注册和SSE传输功能,演示MCP协议后端实现。
kotlin-sdk仓库是一个基于 Model Context Protocol (MCP) 的 Kotlin SDK,它提供了构建MCP客户端和服务器端应用的能力,支持资源、工具和Prompt模板的管理,以及多种传输协议。
Quarkus MCP Server扩展,简化了基于Quarkus框架构建Model Context Protocol (MCP) 服务器的流程,支持资源、工具和Prompt模板的声明式API。