← 返回首页

"提示模板渲染"标签的搜索结果

找到 8 个结果

Claude Cognitive MCP 服务器

基于 Model Context Protocol (MCP) 的后端服务器实现,为 LLM 客户端提供资源管理、工具注册与执行、以及可自定义的 Prompt 模板渲染等上下文服务,支持 JSON-RPC 通信及多传输协议(如 STDIO、HTTP/SSE/WebSocket)以实现安全、可扩展的后端上下文服务。

Claude-Playwright MCP 服务器

基于 Model Context Protocol 的 MCP 后端,为大语言模型提供上下文资源、工具调用和提示模板渲染等能力,支持 JSON-RPC 通信及多传输协议扩展,内置浏览器自动化与会话/缓存等核心模块。

PatternFly MCP Server

基于 Model Context Protocol 的 MCP 服务器端实现,提供 PatternFly 的资源、工具与文档的统一上下文服务,支持多传输协议(STDIO、HTTP/WebSocket 等)、会话管理与能力声明,水平扩展以供 LLM 客户端获取资源、执行工具和渲染 Prompt 模板等上下文信息。

kemdiCode MCP 服务器

基于 Model Context Protocol (MCP) 的后端服务器,向 AI 客户端以标准化方式提供资源管理、工具注册与执行,以及提示模板渲染等功能,采用 JSON-RPC 与客户端通信并支持多种传输通道。

InfoMosaic MCP 服务器框架

InfoMosaic 提供基于 Model Context Protocol (MCP) 的服务器端实现框架,能够托管资源、注册并执行工具、定义并渲染提示模板,并通过多种传输方式对外提供上下文服务与能力声明。

MCP 后端服务器实现(Alex 系列多组件协作)

基于 Model Context Protocol (MCP) 的后端服务器实现,承载资源、工具和提示模板,并通过 JSON-RPC 与 LLM 客户端进行标准化交互,支持多种传输模式,便于向 LLM 客户端提供统一的上下文信息和功能入口。

Oh My OpenCode MCP 服务器

基于 Model Context Protocol(MCP)的后端服务,提供资源管理、工具注册/执行与提示模板渲染等能力,并通过 JSON-RPC 与 LLM 客户端进行标准化通信,支持多种传输协议与会话管理以实现安全、可扩展的上下文服务。

Autobyteus MCP 服务端实现

基于模型上下文协议(MCP)的后端服务器实现,提供资源(Resources)托管与访问、工具(Tools)的注册与执行,以及提示模板(Prompts)的定义与渲染,支持通过 JSON-RPC 与客户端通信,并具备会话管理与多传输协议(如 Stdio、SSE、WebSocket)扩展能力,为大语言模型(LLM)应用提供安全、可扩展的上下文服务框架。