基于 Model Context Protocol 的 MCP 服务器实现,提供资源、工具与提示模板的管理以及 JSON-RPC 通信,支持标准化的上下文服务与多传输协议。
基于 Model Context Protocol (MCP) 的后端服务器实现,提供对 Avanza 公共市场数据的资源、工具与提示模板,通过 JSON-RPC 与 LLM 客户端交互,支持资源管理、工具注册与提示渲染,便于构建可扩展的上下文服务。
基于 Model Context Protocol 的后端 MCP 服务器,实现资源、工具、提示模板等核心接口,使用 JSON-RPC 与客户端通信,向 LLM 客户端提供资源访问、工具调用与提示渲染能力,并支持多种传输协议(stdio、SSE、streamable-http 等)。
基于 AtomCLI 的 Model Context Protocol (MCP) 服务器实现,向 LLM 客户端以标准化方式提供资源、工具、提示模版与会话管理等上下文能力,并通过 JSON-RPC 与客户端通信,支持多传输协议(如 Stdio、SSE、WebSocket)与灵活的配置扩展。
基于 Model Context Protocol (MCP) 的 Dooray MCP 服务器实现,向大型语言模型客户端以标准化方式提供上下文信息与功能。核心能力包括托管与管理资源(Resources)、注册并执行工具(Tools)、定义与渲染提示模板(Prompts),并通过 JSON-RPC 与客户端通信,支持会话管理、能力声明,以及多传输协议(如 Stdio、SSE、WebSocket)的扩展能力。
基于 Model Context Protocol 的后端服务,提供资源管理、工具注册/调用以及提示模板渲染等能力,通过 JSON-RPC 与客户端通信,并集成 Rossum API 提供安全、可扩展的上下文服务。
基于模型上下文协议(MCP)的后端服务器实现,提供资源、工具与提示模板的托管、注册与渲染,支持基于 JSON-RPC 的通信、会话管理以及多种传输协议(如 STDIO、HTTP、SSE)以供 LLM 客户端调用。
基于 Model Context Protocol (MCP) 的后端服务器实现,作为 Plan Cascade 的 MCP 服务端,向 LLM 客户端提供标准化的资源管理、工具注册与执行,以及 Prompt 模板渲染等能力,采用 JSON-RPC 进行请求/响应通信,支持多传输协议、会话管理与能力声明,确保安全、可扩展的上下文服务。
基于 Model Context Protocol 的 MCP 服务器实现,使用 Arivu 的连接器生态在 JSON-RPC 下向 LLM 客户端提供资源、工具与提示模板等上下文信息,并通过标准输入输出(目前实现)进行 JSON-RPC 通信与会话管理。
基于 Model Context Protocol (MCP) 的后端服务器,提供对 GitHub 的上下文资源、工具执行与提示模板的标准化访问,支持 JSON-RPC 交互,适配多种传输方式并具备会话管理、能力声明与远程工具发现等能力,用于为大语言模型提供可扩展的上下文服务。
基于 Model Context Protocol (MCP) 的后端示例服务器,提供资源注册、提示渲染,以及多传输(HTTP/STDIO)支持,便于与 MCP 客户端对接与集成。
一个基于 Charm KV 存储的 MCP 服务器实现,提供资源、工具、和提示模板等功能,供对话式 AI 客户端通过 JSON-RPC 与后台进行上下文交互与操作执行。当前实现通过标准输入输出(stdio)传输进行 JSON-RPC 的通信。
为 AdonisJS 应用提供 Model Context Protocol 集成,支持工具、资源和提示管理