基于 Model Context Protocol (MCP) 的后端实现,提供资源管理、工具注册与执行、以及 Prompts 渲染等 MCP Apps 功能,支持多传输模式(STDIO、SSE、HTTP),用于向 LLM 客户端提供标准化的上下文信息和能力。
基于 Model Context Protocol (MCP) 的后端服务,用于向大语言模型(LLM)及其代理提供资源数据、可执行工具以及可定制的 prompts,支持通过 JSON-RPC 与客户端通信,并可通过 stdio、SSE 等传输协议进行多会话场景下的上下文服务整合。该实现整合了 StreamNative Cloud、Apache Kafka 和 Apache Pulsar 等资源与能力,便于 AI 应用访问和操作海量分布式系统。
基于 Model Context Protocol (MCP) 的后端服务,提供资源管理、工具注册与执行,以及 Prompt 模板渲染等能力,通过 JSON-RPC 与 LLM 客户端进行规范化交互,支持多种传输与会话管理,作为 LLM 应用的上下文与功能后端。