← 返回首页

"工具与资源管理"标签的搜索结果

找到 5 个结果

Sofia Intuition MCP 服务器

基于 Model Context Protocol 的 MCP 服务器实现,向 LLM 客户端提供资源托管、工具注册与执行,以及可渲染的 Prompt 模板等标准化上下文服务,支持多种传输协议(如 SSE、HTTP)并通过 JSON-RPC 与客户端交互。

Baichuan MCP Servers - 医疗场景的 MCP 服务器集合

基于 Model Context Protocol (MCP) 的后端实现,提供资源管理、工具注册与执行、以及 Prompts 渲染等 MCP Apps 功能,支持多传输模式(STDIO、SSE、HTTP),用于向 LLM 客户端提供标准化的上下文信息和能力。

StreamNative MCP Server

基于 Model Context Protocol (MCP) 的后端服务,用于向大语言模型(LLM)及其代理提供资源数据、可执行工具以及可定制的 prompts,支持通过 JSON-RPC 与客户端通信,并可通过 stdio、SSE 等传输协议进行多会话场景下的上下文服务整合。该实现整合了 StreamNative Cloud、Apache Kafka 和 Apache Pulsar 等资源与能力,便于 AI 应用访问和操作海量分布式系统。

Tribal Memory MCP 服务器

基于 Model Context Protocol (MCP) 的后端服务,提供资源管理、工具注册与执行,以及 Prompt 模板渲染等能力,通过 JSON-RPC 与 LLM 客户端进行规范化交互,支持多种传输与会话管理,作为 LLM 应用的上下文与功能后端。

Midnight MCP 服务器

基于 Model Context Protocol (MCP) 的后端实现,提供资源、工具、Prompts 的注册、管理与渲染,并通过 JSON-RPC 与客户端通信,支持会话管理、能力声明以及多传输协议接入,面向 LLM 的上下文服务与功能扩展。