← 返回首页

"上下文渲染"标签的搜索结果

找到 5 个结果

My AI Resources MCP 服务端集合

基于 Model Context Protocol (MCP) 的后端服务器实现集合,用于向大语言模型客户端提供统一的上下文服务,包括资源(Resources)的托管与访问、工具(Tools)的注册与执行,以及提示模板(Prompts)的定义与渲染。仓库内含 Memory Bank 与 Cursor Shortcuts 两个成熟的 MCP 服务器实现示例,均通过标准的 JSON-RPC 形式与客户端通信,并提供以Stdio等多种传输方式的支持。

Claude LTM MCP 服务器

基于 Model Context Protocol (MCP) 的后端服务,提供统一的资源管理、工具调用和提示渲染能力,以便向大模型客户端(LLM)提供可访问的上下文信息和功能。实现包含对资源(Memory)的托管、工具注册与执行,以及对提示/上下文的组织与渲染,支持通过标准输入输出(stdio)以及 TCP/HTTP 钩子等多种传输方式进行 JSON-RPC 交互。

ClaudeMemory MCP 服务器

基于 Model Context Protocol (MCP) 的服务器端实现,提供对资源、工具与提示模板的统一管理与渲染,通过 JSON-RPC 与 LLM 客户端进行通信,支持会话管理、能力声明以及多种传输方式,用于在代码分析与开发场景中提供可扩展的上下文服务。

Concierge MCP Server

基于 Model Context Protocol (MCP) 的后端服务器实现,提供资源托管、工具注册/执行、Prompt 模板渲染,并通过 MCP/JSON-RPC 进行客户端交互,支持会话管理与跨协议传输,面向 LLM 客户端提供可扩展的上下文服务框架。

vLLM.rs MCP 服务端实现

基于 Rust 的 MCP(Model Context Protocol)服务器实现,整合 vLLM.rs 引擎,提供资源托管、工具注册与执行、Prompt 模板渲染等核心 MCP 功能,通过 JSON-RPC 风格通信与 MCP 客户端协同工作,支持多种传输场景并具备会话管理能力。