基于 Model Context Protocol(MCP)的后端服务器集合,向大型语言模型客户端以标准化方式提供上下文信息与功能,包括托管资源、注册与执行工具,以及定义/渲染提示模板;支持多种传输协议(Stdio、SSE、HTTP),通过 JSON-RPC 与客户端通信,适用于 Claude Code 等工作流场景。
基于 Veritas Kanban 的 MCP 服务器实现,提供以 JSON-RPC 方式向 AI 助手/客户端暴露资源、工具、提示模板等上下文能力的后端服务,并支持多传输通道与会话管理。
基于 Model Context Protocol (MCP) 的后端服务器实现,提供资源、工具与 Prompt 模板的注册、管理、执行与渲染,并通过 JSON-RPC 与客户端进行通信,支持多种传输方式与会话管理,便于 LLM 客户端获取上下文信息与外部功能。
基于 Model Context Protocol (MCP) 的后端服务器实现,提供 MCP 的核心能力:注册并执行工具(Tools)、托管资源与数据,以及通过 JSON-RPC 风格的交互向 LLM 客户端提供上下文与功能,支持多传输协议(stdio 与 HTTP/SSE)以便与不同的 AI 客户端对接。项目中包含可运行的 MCP 服务器代码和 HTTP/SSE 传输实现,适合作为对接大模型代理的后端服务。
基于 Model Context Protocol (MCP) 的后端服务器,向大模型客户端提供资源、工具注册与执行、以及可渲染的提示模板等上下文服务,并通过 JSON-RPC 与客户端交互,具备会话管理、审计与记录等能力。
基于 Model Context Protocol (MCP) 的 BoxLang 后端服务器实现,提供对 Resources、Tools 与 Prompts 的注册、管理与暴露,并通过 JSON-RPC 与 MCP 客户端进行通信,支持多传输协议(如 STDIO、SSE、WebSocket),为 LLM 客户端提供标准化的上下文服务、会话与能力声明。
基于 Model Context Protocol (MCP) 的后端服务器实现,提供资源/工具/提示模板的托管与管理,并通过 MCP 协议向 LLM 客户端暴露上下文服务、数据访问与外部功能调用能力。支持多种传输方式(HTTP/JSON-RPC、SSE、WebSocket/流式)以及多用户隔离。