基于 Model Context Protocol 的后端服务器实现,向大语言模型客户端提供统一的上下文服务,包括资源管理、工具注册与执行、以及 Prompt 模板渲染等能力,支持 JSON-RPC 通信和多传输通道(如 STDIO/WebSocket/SSE)以供 AI Agent 调用。
将 Fess 转换为基于 MCP 的服务器,提供 JSON-RPC 2.0 的接口,用于资源、工具、提示等的管理与调用
基于 Fred 平台的 MCP 服务器实现,提供以标准化方式向大语言模型客户端提供资源、工具、提示模板等上下文与能力的后端服务,并通过 JSON-RPC/多传输通道进行通信。包含知识流后端的完整 MCP 服务、以及用于快速演示的最小 MCP 服务器示例和相应部署示例。