基于 Model Context Protocol 的后端服务实现,提供资源托管、工具执行、以及提示模板渲染等能力,支持通过 JSON-RPC 与大语言模型客户端进行资源读取、外部功能调用、以及上下文管理等交互。服务器端提供 STDIO 传输的 JSON-RPC 服务,并可选搭建 HTTP 调试接口,适合将本地上下文服务嵌入到 AI 助手工作流中,便于对接 Kubernetes 资源、CRD、以及服务器端的 dry-run 验证等功能。
基于 Model Context Protocol 的后端服务实现,提供资源托管、工具执行、以及提示模板渲染等能力,支持通过 JSON-RPC 与大语言模型客户端进行资源读取、外部功能调用、以及上下文管理等交互。服务器端提供 STDIO 传输的 JSON-RPC 服务,并可选搭建 HTTP 调试接口,适合将本地上下文服务嵌入到 AI 助手工作流中,便于对接 Kubernetes 资源、CRD、以及服务器端的 dry-run 验证等功能。